

Welcome to Chalkbox’s documentation!

Contents:

	Guides
	Creating an Engine
	Main Engine Class

	Configuration and Loading
	Common Configuration Options

	Engine-specific Configuration Options

	Configuration Validation

Indices and tables

	Index

	Module Index

	Search Page

Guides

Guides for course coordinators using Chalkbox.

Guides:

	Creating an Engine
	Main Engine Class

	Configuration and Loading
	Common Configuration Options

	Engine-specific Configuration Options

	Configuration Validation

Creating an Engine

Engines in ChalkBox are responsible for taking a single student’s submission,
running tests on it, and returning a JSON file containing the test results in
Gradescope format.

Currently, engines exist for both Java and Python, though engines do not
necessarily need to be based on a single language.

This guide will explain how
to create a ChalkBox engine, utilising the existing support framework in
ChalkBox to make engine development easier.

Main Engine Class

Each ChalkBox engine has a main class that extends the abstract class Engine.
These classes reside in the chalkbox.engines package.

A minimal example of an engine, DemoEngine, is as follows.

package chalkbox.engines;

public class DemoEngine extends Engine {
 @Override
 public void run() {
 System.out.println("Running DemoEngine");

 Collection submission = super.collect();

 // Operate on the submission here

 super.output(submission);
 }
}

The Engine abstract class provides a method to collect the student’s
submission, collect(). Calling this method will return a Collection which
represents a single submission, including all the files submitted and a set of
metadata relevant to the submission.

A collection’s metadata is stored internally as a JSON object. Initially, the
metadata includes the following keys:

	root : String path to the directory containing the submission

	json : String path to the JSON file where results will ultimately be
written

The output() method will write the contents of the metadata object, including
any test results added by the engine, to the output JSON file which will be read
by Gradescope.

A Collection also provides a Bundle to represent the submission directory,
and a Bundle to serve as a temporary directory during the engine’s operation.
A Bundle is essentially a wrapper for a directory, providing helpful methods
to retrieve files in that directory.

The run() method should contain the core functionality of the engine, and
is called once by ChalkBox after loading the engine configuration.

Configuration and Loading

Configuration options for engines are specified in a YAML file. The path to
this file is passed as a command line argument when running the ChalkBox JAR.

The format for an engine’s configuration file is as follows.

engine: chalkbox.engines.DemoEngine # fully-qualified class name of engine

courseCode: ABCD1234 # course code identifier
assignment: assignment_1 # assessment identifier
submission: /path/to/submission/dir/ # directory containing submission
outputFile: /path/to/results.json # path to output JSON file for Gradescope

engine-specific options...

When ChalkBox is run with a given configuration file, the EngineLoader class
reads the first document in the file (lines before the ---) to determine
which engine to invoke on the submission.

The engine loader then instantiates the specified engine class.

Common Configuration Options

After loading an engine, the values of the common configuration options
(courseCode, assignment, submission and outputFile) can be accessed by
accessing the appropriate member variables of the Engine class.

Engine-specific Configuration Options

To add engine-specific configuration options, simply create member variables
in the engine’s main class with the same name as the desired configuration
option keys in the YAML file.
A basic getter and setter method will need to be implemented
for each configuration option in the class, as per the JavaBeans approach.
This allows the YAML parser to set these fields when parsing the
configuration file.

Configuration Validation

To allow configuration validation, an engine’s main class should implement the
Configuration interface and provide a validateConfig() method. This method
should first call Engine’s implementation, which ensures all the common
configuration options are set, as follows.

package chalkbox.engines;

public class DemoEngine extends Engine implements Configuration {

 @Override
 public void validateConfig() throws ConfigFormatException {
 super.validateConfig();

 /*
 * Check if engine-specific configuration options are invalid and
 * throw ConfigFormatExceptions as necessary
 */
 }

 // ...
}

An engine’s configuration is validated before running the engine. If the
validation fails, i.e. a ConfigFormatException is thrown, then ChalkBox will
print the stack trace of the exception and terminate immediately.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Chalkbox’s documentation!

 		
 Guides

 		
 Creating an Engine

 		
 Main Engine Class

 		
 Configuration and Loading

_static/chalkbox-small.png

_static/images/logo/chalkbox.png
chalkbox.

_static/chalkbox.png
chalkbox.

_static/images/logo/chalkbox-small.png

_static/minus.png

_static/plus.png

_static/file.png

